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The thermophoresis of a double-layer moderately large volatile droplet with a solid core, placed in a binary 

viscous gas mixture, is considered. The thermodiffusion within the volume of a two-component gas mixture 

is allowed for, and all corrections for the Knudsen number are taken into account completely. An equation 

for the thermophoresis rate is derived, and a full analysis of the velocity of a large particle as a function of 

its radius and the core radius is given. 

The theory of motion of double-layer aerosol particles in heterogeneous gases was treated in [1-8 ]. This 

article is a further development of this issue in the sense of allowing for the thermodiffusion in the volume of a 

two-component gas mixture and completely taking into account all corrections for the Knudsen number 2/R. For 

the first time a numerical analysis of the velocity of a large particle as a function of its radius and the size of the 

inner core when )t/R ~ 0 is carried out. 

We consider a spherical droplet of radius R with a solid core of radius a, placed in a binary viscous gas 

mixture, in which a temperature gradient, constant at infinity (VTe)~, is maintained. On the droplet surface, 

evaporation (or condensation) occurs. We will assume that one of the components of the external binary gas mixture 

coincides, in chemical composition, with the liquid of the particle shell. This particle will be set in thermophoretic 

motion at a certain velocity UT. The particle radius R will be assumed to be much larger than the mean free path 

of the molecules of either external mixture component. In this case, a hydrodynamic method of describing the 

behavior of the medium surrounding the particle can be employed to a sufficient accuracy [ 1-5 ]. 

In order to solve the problem we resort to a spherical coordinate system (r, 0, ~o) with origin fixed at the 

droplet center. We regard the particle as being at rest, and the medium as moving relative to the droplet at the 

mean mass velocity U = -UT at r --, oo. The external medium is characterized by the mean viscosity r/e, the density 

Pe, the temperature T e, and the thermal conductivity Xe. The relative concentration of the first component of the 

external binary gas mixture is Cle. 
The distribution of velocities, pressures, temperatures, and concentrations outside and within the liquid 

phase of the particle is prescribed by a system of linearized equations [1-5, 8 ]: 

yleV2v (e) = vp(e);  

div v (e) ---- 0; 

v2Te = 0; 

~]iV2V(i) = Vp(i); 

div v (1) = O; 

v~Ti = O; 

v~CI~ = O; 

v~T,~ = 0. 
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The subscripts e and i belong to quantities characterizing the external medium and the liquid phase of the 

particle, respectively, and the subscript a belongs to quantities characterizing the solid core. At r ~ oo we have the 

v~ (') = IUl c o s  O; (9)  

v~ ~) = - -  IUI s i n  O; (10)  

p(e) = p(oe); (11) 

T e = Toe q - [ (VTe) |  r c o s 0 ;  (12) 

~ - -  ~ ' 1 0 .  

following boundary conditions: 

(13) 

We now examine the boundary conditions on the droplet surface. The droplet surface is impermeable to 

the second component of the binary gas mixture, which may be expressed by the relation 

2 ] ~(T),~ 
_ .~eh t.., 2v r~ T]e n2~r I~= n -k D~g. ) nero1 OCle = n2e - -  X 

De Or r=R R peToe 

2 w(e) OT e [ 1 " - OTe 02Te ~[ D(~) neml ,xrc 
X--if-  e t g 0 ~ + - - ~ ] l / =  n -  12 Oe Toe Or ~=n" 

(14) 

With a phase transition on the droplet surface, there is continuity of the flow of the first mixture component: 

2 I p(r )~  ll ~)(e) l-~(e} nero2 OGle Ulv  r~ Re 
= rile - -  le r r=R--  ~'12 9e Or r=R R peToe 

C )t �9 
1 _ OT~ 02Te + D[~) n2em2 ,~TD (0 

@ nliv; I.= R- 

(15) 

In Eqs. (14) and (15), nle and n2e are the mean concentrations of the components of the external gas 

mixture; nit is the molecular concentration in the liquid shell of the particle; ml and m2 are the molecular masses 

of the components of the external mixture; n e =n le  + n2e; nlev~ e) and n2eV~ e) are the radial convective flows of the 

components of the gas mixture; nli@) is the radial flow of the particle substance at the particle-external medium 
interface. 

The second terms in Eqs. (14) and (15) are the radial diffusional flows of the components of the external 

mixture, and D12 is the interdiffusion coefficient. 

The first terms on the right side of Eqs. (14) and (15) account for the moderately large particles of the 
part  of the radial flow going to the Knudsen layer. The second terms on the right side are the radial 

thermodiffusional flows of the components of the external mixture, which are proportional to the thermodiffusion 
v(e) coefficient ~TD. 

The tangential velocity components outsideand within the particle satisfy the slip condition on the droplet 

surface 

vg'%:,, = (r.or +_7_ __or_/:1= + 0  " .e. 1 ( I)1 

�9 .(e) ~le 1 1 + + 
+ ^rst OeTo~ R -  R R --flu ] ~---R + 

w<e) ~qe ~r )L  ( O 2 T e  1 0 T . ) t  -b 
-[- l\rsl peTo e R OrO0 r - ~ -  r=R (16). 

v(e) D(e) 1 ( ~ [~D))~ ' ~'R(D)L ) OCae 
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wte) D(e ) ~(BD))~ ( 02Cxe 1 0 C ~ e ) l  
+ ,~Dsl 12 R OrO0 r O0 ~1~" 

Here account is taken of isothermal, thermal, and diffusional slips, which are proportional to the coefficients Cm, 
~(e) K(~s)t, and "-DSl, respectively. Expressions for the rate of the thermal slip with consideration of the curvature effect 

and the Barnett effects for binary gas mixtures as well as all coefficients appearing in boundary condition (16) (Cm, 
K (e) K (e) a a "o(r) o,(x) o(D) an" o't(D)" w re "tain . . . . .  2 ~ TSb DS/, T, C, b'R , PR ,/oR , u /-'R ) e oo eo In [~-1 I. 

The continuity condition for the tangential components of the tensor of viscous stresses on the particle 
surface has the form (see [8 ]) 

( 10v(~ ~) Ov(o ~) v~o e). )] + 
~le - r O0 + Or r " r=R 

1 0(~ OT,]. = ~]i( 1 Or' i, ~- Ova~176 --v(~176 )1 
+ R OTi O0 ~=n r O0 Or r ,~=R" 

(17) 

Here, ai is the surface tension of the liquid on the particle-external medium interface. 

For the temperature on the particle surface we have 

( r e -  = ore [ + oc, e [ 
Or K ")r~ 

Here, K (T) a n d  K (n) are the coefficients of the temperature jumps. 

holds: 

(18) 

For heat fluxes with a phase transition at the droplet-external medium interface the following condition 

' OTe OTi ] L msn2e D~e) ( OCle 
- -ge  --07--- + ~" ~ ] ]~=R -~ ml Pe Is \ ~ + 

+ 
Toe " Or , = n "  '-'q 

• ( c t g -  OT~ OZTe 

(19) 

In Eq. (19), L is the specific heat of the phase transition, Xe and x i are the specific heats of the external 
medium and the droplet, respectively, and C~q cm)'- is a coefficient whose expression was obtained in [9 ]. 

The phase transition of the droplet substance to the first component of the external gas mixture leads to 

the boundary condition 

n OCle ] OTe . (20) 
(Cle - -  C]~))]r=R = /~n Of ]r=R "-~ /((nT) Or r=R 

Here, C ~  ) is the relative concentration of saturating vapors of the first component of the mixture at the temperature 

Te. 
Expanding C~e H) in a temperature series, we arrive at 

Ct.) C~,), OCle 1, ,=R -~ olel,=n + ~ (Te - -  Toe)[,-=~. (21) 

On the core surface (r = a), the boundary conditions 

i l  = o ;  

V(Oi) u-(i) 1]i -~- 1\ TSl 
Po#ol 

(22) 

"1 OTi ] 
r 0 0  ,=a (23) 

are fulfilled (see [1 ]). Condition (23) accounts for the thermal slip of the liquid shell along the core, which is 
(i) w proportional to K(4)sl. The coefficient KTS/ as  determined experimentally for a variety of liquids in [13 ]. 
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On the core surface, the conditions of continuity of the heat and temperature fluxes hold: 

"--~r ,=~--- or Ir=~ 

T~I,=~ = T,I,=~. 

(24) 

(25) 

The value of the resultant of all forces applied to the elements of the spherical surface is zero. This condition 
has the form 

F = S 5 (p~) cos 0 - -  p~$) sin 0)l~=ndS = 0. (26) 
S 

By solving the system of equations (14)-(26) (see [1, 8 ]), for the thermophoresis rate UT for a moderately" 
large double-layer volatile particle we obtain 

�9 2 " \ 

U r = ~ 6D (~)12 ~ne (ml~ + __2 __~ n~ml + n2~nh ) X 
n~ePe 3 r nil 

Kf 
~ +  ~ ' + ~ ( 1 + 0  

R R 
X (VTe)~ -F 

~frj~, ,qe (,V..~_ 2 ~ tZle ) X 
R p~Toe 3 ~ nli 

x 

t~ Tn 
K} R 2 + ~(I + ,~) 

R R 1 + '2KnlR  

Y 
(vT~)~ + 

-/- 3D~7 �9 a, rD 2 ~ nleml + n~jn~ 

n2epe Toe 3 r nu 

X 

1 + 2  K~- 8' 
R 1 + 2K]/R 2~(1 + r 

(VT~)- - -  

2 R Oai ,6~(1 +tp)  1 
3 ~h OT~ l + 2.Crn~' + 2_~ rl~ 8 

R 3 ~ 

- - - , x r s ,  ~ ~ t t .  1 + ~--~-- 

(vT~)~ --  

l (vTJ. - -  
1 + 2  c,.~ + ~  ~em~ 

R 3 ~h 

(27) 

~.r)a 
4 ~ ' ~ "  ~b [3 nle 

R 
.R 

- 2  R 
R 1 + 2K~,/R 

-]- ~ (1 -t-. r 

DeToe o~ nil  

- -  rst ~ 1 + 
peToe 

Y 

+ 
R R I x 

(vT~)| - -  
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where 

X 

3f_o re'(e) me , 
". ~xrSt peTo e R ' 

2 - -  
R R 1 + 2K~IR 

[5~) X 3~(1 -k- qD)-- 1 -1- ~ - -  

-k- g (1 +ep) 

(VTe)~ + 

- -  2KD~)s'D~"~ ( 1 + ---R----(rc [~ '  )" + [~D) L R  ,) 

+ 8 '  
iff, 2 
R R 1 + 2K'J/R 

c~,'t~) D (~ ~D)~ "+- u . ~ D S l  12 
R 

V 
/C  g r  r 

" + .  ~ ' .+ ~ ( 1 +  ~) 
R R 

R R 
(Vr~).,  

1 + 2  

( y r . ) .  Z 

(vT~)| 

V = 

, _ - -  

R4, a3 ' R 5  
a = 3 + 2- - - 2 ~  3a2; 

a s R a 8 

3 R 4 a3 'R 5 
t- - -  2 ~ 3a~;  

2 a 2 R a 3 

I(~ 
R 1 + 2  K~ l + 2,Crn~" ~qe R + 2  6 ;  

R , 

R 5 a a 9 R r 9 a2 -~ 5R ~ 2- + 2 - -  
a a R 2 a 2 2 

5 
1 ~ =  R 2 +  - -  

2 

t 

l + 2  K r  f f _2  
R 

= 
t?, 5 IP, ~ a 3 

2 ~ - -  3 . . . .  2 + 3a~ 
a 3 . . . .  a 2 R 

an 1~r 
5aR  q- 5R  2 

R a 9 
= R5 Rt~ a3 ; 

2 - ~  - -  3 ~  --- 2 -}- 3a 2 
a n a 2 R 

,v =- - -  

OCae 

OT~ 

eO = 

• 1 
~ a  

1 - I - 2  • 
Na 

a 3 

R3 

2CmE 1 2 ~1--2-~ 6; 

�9 ) , ~  

2Lm~m~n~ D(() 2 + R (1 q- q~); 

P~ 1 + 2  ,K'~ 
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R 1 + 2K~,IR + 

+ Ltrhmzn~ 

Pe 

','(') / g r ,5' 
�9 -.(e) I \ T D  l1 + 2  
L),2 ~ R 1 + 2RT, IR 

- 2 

1 + 2K~. + 2K~. R 
1 + 2  K~ ..... R 

+ 2• + eo) (l ~C(oC")) --t-~2" }-l; 

= 2c(oCm)~e 

.) +,} 

+ 

X 

K 
2Lmlm~n2e D~e~ R R 

I(~ 
1 + 2 - -  

R 
Pe 

For a large spherical double-layer volatile particle, 2 / R  -- 0. in this case, the thermophores is  rate is 

determined from the following equation: 

Here 

x 

Ur .~.<e) ne ~,(1 + q,) (vTo)~ 
peToe ~1 

I 
2 R 0oi 6~x(I + q~) 2 ~le 
3 "qi OTi 1 + ~  ~ 6  

3 % 

1 + ~  2 "% 
�9 1 +  ~ / 5  

3 ' %  

O t,'(i) 1]i llI~ 1 ( 
- -  z , , f \ T S l  

\ 

(vT~)o, - -  

~ ~.c~) ( ) + 3D~ n~ ~rD 2 ~ nl~ma + n2dn~. • 
n2ePe Toe ml"vl + 3 ~x nn 

1 - -  2 ~  (1 + q~) 

X 

2 
6D,~, ne ( @ 2 [3 nx~ml+n~m,) x 

(vTe).o - -  1 2 ~  m1% ~ - " -  
n2ePe" 3 t~ n l i  / 

~1 (1 + q~) (vr~)| - -  Zl~DSli-li2 (vre)**. 
YI Y1 

71 

(28) 

1 2 ~b 

% ~ 3 I h 

Lmlm2ne ~2 . 
• -t- pe Toe 

z r,-Ie) 2Lmlm~n~ D(~) I,,xrD + 6') 
• (1 - -  2qo) + 2• (1 + qP) + . Pe " 12 Toe (1 +q~) 
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o ' i  a'z DI6 

Fig. 1, Droplet velocity vs radius. UT/(VT e) | 10 -5 m2/(sec- K); R,/xm. 

Fig. 2. Droplet velocity vs core size. UT/(VT e) ~, 10 -6 m2/(sec. K) ; a, pm. 

Using Eq. (28), calculations were performed for UT/(VTe)~ of a spherical double-layer volatile aerosol 
particle suspended in steam-nitrogen mixture, whose outer shell was water (Fig. 1). Analysis of the terms in Eq. 

(28) showed that the droplet tends to move toward the temperature fall in the external medium due to the first, 

fourth, fifth, and sixth terms. However, the contribution of these terms to the net result is not decisive because 

their magnitude is much smaller than that of the second term, which is proportional to Oai/OT i. By virtue of the 

fact that Oai/OTi < 0, the particle moves toward the temperature rise in the external medium. The effect of the term 
,,(e) proportional to I~TD is insignificant. 

The effect of the core on the droplet velocity was evaluated. As the core grows with a constant droplet 

radius, a decrease in velocity to a certain value is observed. A further increase in the core radius (R = a) makes it 

necessary to consider the motion of a solid aerosol particle (Fig. 2). 
An increase in the thermal conductivity of the core leads to a decrease in the particle velocity. 
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